Other Information
Cost and Payback Analysis:
The team performed a cost-benefit analysis for the building’s sustainable features. This includes the additional initial costs for passive cooling including the green roofs, high efficiency operable windows, exterior overhangs; water use reduction; and improved indoor air quality strategies such as natural light and ventilation and low-emitting materials and finishes. These features are responsible for about 3.5% of the project costs.
These strategies result in significant financial benefits projected to have an annual savings of more than $4,400, which translates to a payback period of less than ten years, using current utility costs without factoring in rising utility rates.
Process and Results:
Predesign: The existing site location was analyzed for proper orientation and heat gain and differences between the local and regional climate. The architects saw the potential of employing numerous passive strategies that would dramatically enhance the building’s relationship with the street, neighborhood while maintaining privacy for the residents and conserving precious open space. This also included an analysis that would conserve building resources and saved time and money. The decision during predesign to make the bedrooms smaller than normal allowed the owners add more functional public family areas within their budget.
Design: Numerous environmental considerations were incorporated in the early planning and design stages of the project. The architects and energy consultant collaborated from the outset to minimize energy use and best utilize natural features such as the sun and prevailing winds. Engineering design criteria and overly conservative engineer factors were analyzed to reduce "over designing" the building and therefore wasting precious material. This alone saves miles of electrical wiring, thousands of feet of plumbing pipes and tons of steel reinforcing and concrete.
The orientation and shape of the building and the placement of windows maximized natural daylighting and natural ventilation and provided shading where needed. The building’s design and technologies were tested and verified in the design process using simulated 3D computer modeling.
Construction Process: The construction process was managed to be as resource efficient as possible. The architects provided the contractor with a waste management plan that resulted in over 80% of the construction waste being recycled. The waste removal company did not sort and recycled construction debris, however, so contractors were required to recycle their own construction waste. Specifications were written for strict resource management, conservation, recycling procedures and protocols.
Operations/Maintenance: The project was designed to significantly reduce operations and maintenance costs. An operations and maintenance program has been designed and an operation manual has been provided to the owner. All systems are currently being monitored for performance. It is important to coordinate rebate requirements with actual product and installation warranties.
Materials, such as formaldehyde-free MDF, concrete, natural stone and natural solid woods all have homogeneous solid cores. When scratched or damaged it is easy to repair or is unnoticeable. Landscaping requires almost no maintenance and is drought tolerant. Exterior finishes are natural pigmented cement board, recycled steel, and FSC-certified bamboo and concrete, requiring no painting or other refinishing. To date the building has required no maintenance other than adjusting and tuning pumps, and irrigation systems and cleaning gutters.
Commissioning: The architects have previously completed several LEED certified buildings, including pioneering certification baseline testing procedures in sectors (multi-family housing) of the building industry where the USGBC had not yet developed certification standards. Although not submitted for certification at this time, it is the policy of the firm to follow the LEED certification process whether or not their clients choose to actually submit their project for certification. These procedures are standard practice for the architects as they have adopted the 2030 challenge and have been exceeding its goals for more than a decade.
source: http://www.aiatopten.org